Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Viruses ; 16(3)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38543762

RESUMO

Wild birds are a natural reservoir for zoonotic viruses. To clarify the role of migratory birds in viruses spread in Poyang Lake, we investigated the microbiome of 250 wild bird samples from 19 species in seven orders. The bacterial and viral content abundance and diversity were preliminarily evaluated by Kraken2 and Bracken. After de novo assembly by Megahit and Vamb, viral contigs were identified by CheckV. The reads remapped to viral contigs were quantified using Bowtie2. The bacterial microbiome composition of the samples covers 1526 genera belonging to 175 bacterial orders, while the composition of viruses covers 214 species belonging to 22 viral families. Several taxonomic biomarkers associated with avian carnivory, oral sampling, and raptor migration were identified. Additionally, 17 complete viral genomes belonging to Astroviridae, Caliciviridae, Dicistroviridae, Picornaviridae, and Tombusviridae were characterized, and their phylogenetic relationships were analyzed. This pioneering metagenomic study of migratory birds in Poyang Lake, China illuminates the diverse microbial landscape within these birds. It identifies potential pathogens, and uncovers taxonomic biomarkers relevant to varied bird habitats, feeding habits, ecological classifications, and sample types, underscoring the public health risks associated with wintering migratory birds.


Assuntos
Lagos , Microbiota , Humanos , Animais , Filogenia , Aves , Animais Selvagens , Biomarcadores , China
2.
Front Public Health ; 11: 1255969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155898

RESUMO

Introduction: The continued emergence of human infections of H9N2 avian influenza virus (AIV) poses a serious threat to public health. The prevalent Y280/G9 lineage of H9N2 AIV in Chinese poultry can directly bind to human receptors, increasing the risk of spillover infections to humans. Since 2013, the number of human cases of H9N2 avian influenza has been increasing continuously, and in 2021, China reported the highest number of human cases, at 25. Methods: In this study, we analyzed the age, geographic, temporal, and sex distributions of humans with H9N2 avian influenza in 2021 using data from the National Influenza Center (Beijing, China). We also conducted evolutionary, gene homology, and molecular characterization analyses of the H9N2 AIVs infecting humans. Results: Our findings show that children under the age of 12 accounted for 80% of human cases in 2021, and females were more frequently affected than males. More cases occurred in winter than in summer, and most cases were concentrated in southern China. Human-infecting H9N2 viruses showed a high level of genetic homology and belonged to the prevalent G57 genotype. Several additional α2,6-SA-binding sites and sites of mammalian adaptation were also identified in the genomes of human-infecting H9N2 viruses. Discussion: Therefore, continuous monitoring of H9N2 AIV and the implementation of further measures to control the H9N2 virus in poultry are essential to reduce the interspecies transmission of the virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Animais , Masculino , Feminino , Criança , Humanos , Influenza Aviária/epidemiologia , Vírus da Influenza A Subtipo H9N2/genética , Influenza Humana/epidemiologia , Aves Domésticas , China/epidemiologia , Mamíferos
3.
Front Mol Neurosci ; 16: 1142072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324588

RESUMO

Background: According to our previous study, the loss of inhibitory interneuron function contributes to central sensitization in chronic migraine (CM). Synaptic plasticity is a vital basis for the occurrence of central sensitization. However, whether the decline in interneuron-mediated inhibition promotes central sensitization by regulating synaptic plasticity in CM remains unclear. Therefore, this study aims to explore the role of interneuron-mediated inhibition in the development of synaptic plasticity in CM. Methods: A CM model was established in rats by repeated dural infusion of inflammatory soup (IS) for 7 days, and the function of inhibitory interneurons was then evaluated. After intraventricular injection of baclofen [a gamma-aminobutyric acid type B receptor (GABABR) agonist] or H89 [a protein kinase A (PKA) inhibitor), behavioral tests were performed. The changes in synaptic plasticity were investigated by determining the levels of the synapse-associated proteins postsynaptic density protein 95 (PSD95), synaptophysin (Syp) and synaptophysin-1(Syt-1)]; evaluating the synaptic ultrastructure by transmission electron microscopy (TEM); and determining the density of synaptic spines via Golgi-Cox staining. Central sensitization was evaluated by measuring calcitonin gene-related peptide (CGRP), brain-derived neurotrophic factor (BDNF), c-Fos and substance P (SP) levels. Finally, the PKA/Fyn kinase (Fyn)/tyrosine-phosphorylated NR2B (pNR2B) pathway and downstream calcium-calmodulin-dependent kinase II (CaMKII)/c-AMP-responsive element binding protein (pCREB) signaling were assessed. Results: We observed dysfunction of inhibitory interneurons, and found that activation of GABABR ameliorated CM-induced hyperalgesia, repressed the CM-evoked elevation of synapse-associated protein levels and enhancement of synaptic transmission, alleviated the CM-triggered increases in the levels of central sensitization-related proteins, and inhibited CaMKII/pCREB signaling via the PKA/Fyn/pNR2B pathway. The inhibition of PKA suppressed the CM-induced activation of Fyn/pNR2B signaling. Conclusion: These data reveal that the dysfunction of inhibitory interneurons contributes to central sensitization by regulating synaptic plasticity through the GABABR/PKA/Fyn/pNR2B pathway in the periaqueductal gray (PAG) of CM rats. Blockade of GABABR-pNR2B signaling might have a positive influence on the effects of CM therapy by modulating synaptic plasticity in central sensitization.

4.
China CDC Wkly ; 5(7): 152-158, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37009521

RESUMO

Introduction: The World Health Organization (WHO) proposed using influenza surveillance systems to carry out coronavirus disease 2019 (COVID-19) surveillance due to the similarity between the two diseases in some respiratory symptoms. To assess the prevalence of COVID-19, we analyzed the influenza-like illness (ILI) and positive rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detections in ILI patients reported to the influenza Surveillance Information System (CNISIS) since late 2022. Methods: Data related to ILI were reported by national surveillance sentinel hospitals. Positive testing for SARS-CoV-2 and influenza viruses was conducted using real-time reverse transcription polymerase chain reaction (rRT-PCR) detection by the national influenza surveillance network laboratories. Surveillance data were reported to CNISIS. Results: Beginning on December 12, 2022 (Week 50), the ILI percentage increased dramatically, peaking in Week 51 at 12.1%. Subsequently, the ILI percentage began to decline rapidly from Week 52, 2022, and by Week 6, 2023 (February 6-12), the ILI and ILI percentage had returned to the levels observed at the beginning of December 2022. From December 1, 2022 to February 12, 2023, 115,844 specimens were tested for both SARS-CoV-2 and influenza virus. Of these, 30,381 (26.2%) were positive for SARS-CoV-2 and 1,763 (1.5%) were positive for influenza virus. The positive rate of SARS-CoV-2 tests peaked at 74.1% around December 23 and 25. Conclusions: Sentinel-based surveillance, previously established for influenza, is an effective way to track the circulation trend of SARS-CoV-2 during community-level epidemics. There was no co-prevalence of SARS-CoV-2 and influenza virus during the outbreak of SARS-CoV-2, even during the winter influenza season. However, it is important to remain vigilant for the potential rise of influenza activities following the COVID-19 epidemic.

5.
J Headache Pain ; 24(1): 44, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085778

RESUMO

BACKGROUND: Central sensitization has been widely accepted as an underlying pathophysiological mechanism of chronic migraine (CM), activation of cannabinoid type-1 receptor (CB1R) exerts antinociceptive effects by relieving central sensitization in many pain models. However, the role of CB1R in the central sensitization of CM is still unclear. METHODS: A CM model was established by infusing inflammatory soup (IS) into the dura of male Wistar rats for 7 days, and hyperalgesia was assessed by the mechanical and thermal thresholds. In the periaqueductal gray (PAG), the mRNA and protein levels of CB1R and hyperpolarization-activated cyclic nucleotide-gated cation channel 2 (HCN2) were measured by qRT-PCR and western blotting. After intraventricular injection of Noladin ether (NE) (a CB1R agonist), ZD 7288 (an HCN2 blocker), and AM 251 (a CB1R antagonist), the expression of tyrosine phosphorylation of N-methyl-D-aspartate receptor subtype 2B (pNR2B), calcium-calmodulin-dependent kinase II (CaMKII), and phosphorylated cAMP-responsive element binding protein (pCREB) was detected, and central sensitization was evaluated by the expression of calcitonin gene-related peptide (CGRP), c-Fos, and substance P (SP). Synaptic-associated protein (postsynaptic density protein 95 (PSD95) and synaptophysin (Syp)) and synaptic ultrastructure were detected to explore synaptic plasticity in central sensitization. RESULTS: We observed that the mRNA and protein levels of CB1R and HCN2 were both significantly increased in the PAG of CM rats. The application of NE or ZD 7288 ameliorated IS-induced hyperalgesia; repressed the pNR2B/CaMKII/pCREB pathway; reduced CGRP, c-Fos, SP, PSD95, and Syp expression; and inhibited synaptic transmission. Strikingly, the application of ZD 7288 relieved AM 251-evoked elevation of pNR2B, CGRP, and c-Fos expression. CONCLUSIONS: These data reveal that activation of CB1R alleviates central sensitization by regulating HCN2-pNR2B signaling in CM rats. The activation of CB1R might have a positive influence on the prevention of CM by mitigating central sensitization.


Assuntos
Sensibilização do Sistema Nervoso Central , Transtornos de Enxaqueca , Receptor CB1 de Canabinoide , Receptores de N-Metil-D-Aspartato , Animais , Masculino , Ratos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Sensibilização do Sistema Nervoso Central/fisiologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Transtornos de Enxaqueca/metabolismo , Canais de Potássio/efeitos adversos , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Front Oncol ; 12: 904323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978817

RESUMO

Objective: To evaluate the utility of apparent diffusion coefficient (ADC) histogram analysis to differentiate between three types of solid ovarian tumors: granulosa cell tumors (GCTs) of the ovary, ovarian fibromas, and high-grade serous ovarian carcinomas (HGSOCs). Methods: The medical records of 11 patients with GCTs of the ovary (regions of interest [ROI-cs], 137), 61 patients with ovarian fibromas (ROI-cs, 161), and 14 patients with HGSOCs (ROI-cs, 113) confirmed at surgery and histology who underwent diffusion-weighted imaging were retrospectively reviewed. Histogram parameters of ADC maps (ADCmean, ADCmax, ADCmin) were estimated and compared using the Kruskal-WallisH test and Mann-Whitney U test. The area under the curve of receiver operating characteristic curves was used to assess the diagnostic performance of ADC parameters for solid ovarian tumors. Results: There were significant differences in ADCmean, ADCmax and ADCmin values between GCTs of the ovary, ovarian fibromas, and HGSOCs. The cutoff ADCmean value for differentiating a GCT of the ovary from an ovarian fibroma was 0.95×10-3 mm2/s, for differentiating a GCT of the ovary from an HGSOC was 0.69×10-3 mm2/s, and for differentiating an ovarian fibroma from an HGSOC was 1.24×10-3 mm2/s. Conclusion: ADCmean derived from ADC histogram analysis provided quantitative information that allowed accurate differentiation of GCTs of the ovary, ovarian fibromas, and HGSOCs before surgery.

7.
Infect Dis Poverty ; 11(1): 74, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768826

RESUMO

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, seasonal influenza activity declined globally and remained below previous seasonal levels, but intensified in China since 2021. Preventive measures to COVID-19 accompanied by different epidemic characteristics of influenza in different regions of the world. To better respond to influenza outbreaks under the COVID-19 pandemic, we analyzed the epidemiology, antigenic and genetic characteristics, and antiviral susceptibility of influenza viruses in the mainland of China during 2020-2021. METHODS: Respiratory specimens from influenza like illness cases were collected by sentinel hospitals and sent to network laboratories in Chinese National Influenza Surveillance Network. Antigenic mutation analysis of influenza virus isolates was performed by hemagglutination inhibition assay. Next-generation sequencing was used for genetic analyses. We also conducted molecular characterization and phylogenetic analysis of circulating influenza viruses. Viruses were tested for resistance to antiviral medications using phenotypic and/or sequence-based methods. RESULTS: In the mainland of China, influenza activity recovered in 2021 compared with that in 2020 and intensified during the traditional influenza winter season, but it did not exceed the peak in previous years. Almost all viruses isolated during the study period were of the B/Victoria lineage and were characterized by genetic diversity, with the subgroup 1A.3a.2 viruses currently predominated. 37.8% viruses tested were antigenically similar to reference viruses representing the components of the vaccine for the 2020-2021 and 2021-2022 Northern Hemisphere influenza seasons. In addition, China has a unique subgroup of 1A.3a.1 viruses. All viruses tested were sensitive to neuraminidase inhibitors and endonuclease inhibitors, except two B/Victoria lineage viruses identified to have reduced sensitivity to neuraminidase inhibitors. CONCLUSIONS: Influenza activity increased in the mainland of China in 2021, and caused flu season in the winter of 2021-2022. Although the diversity of influenza (sub)type decreases, B/Victoria lineage viruses show increased genetic and antigenic diversity. The world needs to be fully prepared for the co-epidemic of influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus globally.


Assuntos
COVID-19 , Influenza Humana , Orthomyxoviridae , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/epidemiologia , China/epidemiologia , Humanos , Influenza Humana/epidemiologia , Neuraminidase/genética , Orthomyxoviridae/genética , Pandemias , Filogenia , SARS-CoV-2 , Estações do Ano
8.
Emerg Infect Dis ; 28(7): 1332-1344, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35476714

RESUMO

The recent rise in the frequency of influenza A(H5N6) infections in China has raised serious concerns about whether the risk for human infection has increased. We surveyed epidemiologic, clinical, and genetic data of human infections with A(H5N6) viruses. Severe disease occurred in 93.8% of cases, and the fatality rate was 55.4%. Median patient age was 51 years. Most H5N6 hemagglutinin (HA) genes in human isolates in 2021 originated from subclade 2.3.4.4b; we estimated the time to most recent common ancestor as June 16, 2020. A total of 13 genotypes with HA genes from multiple subclades in clade 2.3.4.4 were identified in human isolates. Of note, 4 new genotypes detected in 2021 were the major causes of increased H5N6 virus infections. Mammalian-adapted mutations were found in HA and internal genes. Although we found no evidence of human-to-human transmission, continuous evolution of H5N6 viruses may increase the risk for human infections.


Assuntos
Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , China/epidemiologia , Humanos , Mamíferos , Pessoa de Meia-Idade , Filogenia , Vírus Reordenados/genética
9.
China CDC Wkly ; 3(44): 918-922, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34745692

RESUMO

INTRODUCTION: During the coronavirus disease 2019 (COVID-19) pandemic, the circulation of seasonal influenza virus declined globally and remained below previous seasonal levels. We analyzed the results of the epidemiology, antigenic, and genetic characteristics, and antiviral susceptibilities of seasonal influenza viruses isolated from the mainland of China during October 5, 2020 through September 5, 2021, to better assess the risk of influenza during subsequent influenza season in 2021-2022. METHODS: Positive rates of influenza virus detection during this period were based on real-time polymerase chain reaction (PCR) detection by the Chinese National Influenza Surveillance Network laboratories, and isolated viruses from influenza positive samples were submitted to the Chinese National Influenza Center. Antigenic analyses for influenza viruses were conducted using the hemagglutination inhibition assay. Next-generation sequencing was used for genetic analyses. Viruses were tested for resistance to antiviral medications using a phenotypic assay and next-generation sequencing. RESULTS: In southern China, the influenza positivity rate was elevated especially after March 2021 and was higher than the same period the previous year with the COVID-19 pandemic. In northern China, influenza positive rate peaked at Week 18 in 2021 and has declined since then. Nearly all isolated viruses were B/Victoria lineage viruses during the study period, and 37.3% of these viruses are antigenically similar to the reference viruses representing the vaccine components for the 2020-2021 and 2021-2022 Northern Hemisphere influenza season. All seasonal influenza viruses were susceptible to neuraminidase inhibitors and endonuclease inhibitors. CONCLUSIONS: Influenza activity has gradually increased in the mainland of China in 2021, although the intensity of activity is still lower than before the COVID-19 pandemic. The diversity of circulating influenza types/subtypes decreased, with the vast majority being B/Victoria lineage viruses. The surveillance data from this study suggest that we should strengthen influenza surveillance during the upcoming traditional influenza season. It also provided evidence for vaccine recommendations and prevention and control of influenza and clinical use of antiviral drugs.

10.
Pulm Circ ; 11(2): 20458940211011027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221349

RESUMO

AIMS: The virus is common in patients with viral pneumonia. However, the viral etiology and clinical features of patients with viral pneumonia in China remain unclear. The main purpose of this study was to analyze the viral causes and epidemiology of patients with viral pneumonia in Beijing, which can significantly improve the pertinence and accuracy of clinical treatment of the disease. METHODS: Firstly, 1539 respiratory specimens of pneumonia (oropharyngeal swabs, nasopharyngeal swabs, saliva samples and bronchoalveolar lavage fluid) were collected from 19 hospitals in Beijing from September 2015 to August 2018. Then, TaqMan low-density microfluidic chip technology was used to detect viral pneumonia specimens in 1539 respiratory tract specimens of pneumonia and determine the types of viral bacteria in them. Lastly, the analysis of demographic, clinical and etiological data of patients with viral pneumonia was performed. RESULTS: The results showed that among the 1539 respiratory tract specimens with pneumonia, 760 were detected as viral pneumonia specimens, with a positive rate of 49.4%. Among which, 467 were infected with mono-viral and 293 were infected with multi-viral. Influenza A virus (Flu A), mycoplasma pneumoniae (MPn), Ebola virus (EBV) and herpes simplex virus type 1 (HSV-1) were the major viral components in the samples of these patients. Furthermore, these viral species were significantly associated with sample sources, onset season and certain clinical characteristics. DISCUSSION: Our findings may provide corresponding treatment strategies for viral pneumonia patients infected with specific viruses.

11.
Medicine (Baltimore) ; 100(17): e25738, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33907168

RESUMO

BACKGROUND: Whether hypothyroidism is related to non-alcoholic fatty liver disease (NAFLD) is controversial. Our aim was to investigate the relationship between NAFLD and hypothyroidism that may predict the NAFLD potential of these lesions and new prevention strategies in hypothyroidism patients. METHODS: Totally 51,407 hypothyroidism patients with average 28.23% NAFLD were analyzed by Revman 5.3 and Stata 15.1 softwares in the present study. The PubMed and Embase databases were systematically searched for works published through May 9, 2020. RESULTS: The blow variables were associated with an increased risk of NAFLD in hypothyroidism patients as following: increased of thyroid stimulating hormone (TSH) levels (odds ratio [OR] = 1.23, 1.07-1.39, P = .0001); old age (mean difference [MD] = 3.18, 1.57-4.78, P = .0001); increased of body mass index (BMI) (MD = 3.39, 2.79-3.99, P < .000001); decreased of free thyroxine 4 (FT4) levels (MD = -0.28, -0.53 to -0.03, P = .03). In addition, FT3 (MD = 0.11, -0.09-0.3, P = .29) had no association with the risk of NAFLD in hypothyroidism patients. CONCLUSION: Our systematic review identified results are as following: hypothyroidism was positively associated with the risk of NAFLD. The increased concentration of TSH levels maybe a risk factor that increased incidence of NAFLD. The BMI of NAFLD patients was significantly higher than that of non-NAFLD patients. Old age was significantly associated with the incidence of NAFLD. FT4 was significantly associated with the risk of NAFLD due to its negatively effect while FT3 was not significantly related to the risk of NAFLD. Taken together, the present meta-analysis provides strong evidence that hypothyroidism may play a vital role in the progression and the development of NAFLD.


Assuntos
Hipotireoidismo , Hepatopatia Gordurosa não Alcoólica , Tireotropina/sangue , Progressão da Doença , Humanos , Hipotireoidismo/sangue , Hipotireoidismo/epidemiologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Prognóstico , Fatores de Risco , Testes de Função Tireóidea
12.
Neurosci Lett ; 743: 135552, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352285

RESUMO

Central sensitization is one of the important pathological mechanisms of chronic migraine (CM). Metabolic glutamate receptor 5 (mGluR5) mediates pain by activating various intracellular pathways. However, whether mGluR5 contributes to central sensitization in CM and the exact mechanism remains unclear. Male rats were used to establish a CM model by repeated infusions of inflammatory soup (IS) for 7 days to stimulate the activation of the dural nociceptor. The mechanical and thermal thresholds were used to evaluate allodynia, and central sensitization was assessed by measuring calcitonin gene-related peptide (CGRP) and substance P (SP). Microtubule associated protein 1 light chain 3 (LC3) and p62/SQSTM1 were used to assess autophagy. We found that the expression of mGluR5 in the trigeminal nucleus caudalis (TNC) of CM rats was significantly increased. In addition, the downregulation of mGluR5 activated autophagy by inhibiting the mTOR pathway. Moreover, the activation of autophagy alleviated allodynia and central sensitization in CM rats. This study identified a novel strategy for the treatment of CM; the downregulation of mGluR5 in a rat model of CM decreased the expression of the inflammatory factor interleukin-1 beta (IL-1ß) and the central sensitization-associated proteins CGRP and SP by activating autophagy via inhibiting the mTOR pathway.


Assuntos
Autofagia/fisiologia , Sensibilização do Sistema Nervoso Central/fisiologia , Regulação para Baixo/fisiologia , Transtornos de Enxaqueca/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Doença Crônica , Regulação para Baixo/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/toxicidade , Masculino , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
13.
J Headache Pain ; 21(1): 139, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276724

RESUMO

BACKGROUND: The mechanism of chronic migraine (CM) is complex, central sensitization is considered as one of the pathological mechanism. Synaptic plasticity is the basis of central sensitization. Metabotropic glutamate receptor 5 (mGluR5) plays a vital role in the synaptic plasticity of the central nervous system. However, whether mGluR5 can promote the central sensitization by regulating synaptic plasticity in CM is unknown. METHODS: Male Wistar rats were used to establish a CM rat model, and the expression of mGluR5 mRNA and protein were detected by qRT-PCR and western blot. The allodynia was assessed by mechanical and thermal thresholds, and central sensitization was assessed by expression of the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) at Serine 133(pCREB-S133) and c-Fos. The synaptic-associated protein postsynaptic density protein 95 (PSD), synaptophysin (Syp), and synaptophysin-1(Syt-1), synaptic ultrastructure, and dendritic spines were detected to explore synaptic plasticity. The expression of PKC, total NR2B(tNR2B), and phosphorylation of NR2B at Tyr1472(pNR2B-Y1472) were detected by western blot. RESULTS: We found that the expression of mGluR5 was upregulated in CM rats. Downregulated the mGluR5 with MPEP alleviated the allodynia and reduced the expression of CGRP, pCREB-S133, c-Fos, PSD, Syp and Syt-1 and synaptic transmission. Moreover, the administration of MPEP inhibited the upregulation of PKC and pNR2B-Y1472. CONCLUSIONS: These results indicate that mGluR5 contributes to central sensitization by regulating synaptic plasticity in CM through the PKC/NR2B signal, which suggests that mGluR5 may be a potential therapeutic candidate for CM.


Assuntos
Transtornos de Enxaqueca , Plasticidade Neuronal , Animais , Hiperalgesia , Masculino , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5
14.
FASEB J ; 34(11): 14780-14798, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32931071

RESUMO

The occurrence of pain has always been closely related to a break in the balance between excitatory and inhibitory systems, and the internal relationship between these two systems has not been studied in the pathogenesis of chronic migraine (CM). In this study, we explored how inhibitory interneurons specifically modulate the glutamate-induced hyperexcitability in the periaqueductal gray (PAG) of CM rats. The CM model was established by repeated dural infusion of inflammatory soup (IS) in rats. Then, Baclofen, a gamma-aminobutyric acid type B receptor (GABABR) agonist; CGP35348, a GABABR antagonist; H89, a protein kinase A (PKA) inhibitor; and 8-Bromo-cAMP, a PKA agonist, were applied by intraventricular injection to investigate the detailed CM mechanism. Our results showed that GABABR2 mRNA and protein levels were significantly downregulated (P < .01) in the PAG of CM rats. Similarly, gamma-aminobutyric acid (GABA) and its synthetase glutamate decarboxylase 65/67 (GAD65/67) seriously decreased (P < .01), implying a deficit in the function of inhibitory interneurons in the PAG of CM rats. Afterward, the application of Baclofen and H89 alleviated the IS-evoked hyperalgesia and extenuated vesicular glutamate transporter 2 (VGLUT2), glutamate, calcitonin gene-related peptide (CGRP), and c-Fos expression by regulating the GABABR2/PKA/SynCAM1 pathway in the PAG of CM rats, while the application of CGP35348 and 8-Bromo-cAMP exactly exerted the opposite effect. Importantly, CGP35348 induced an elevation of CGRP, and VGLUT2 expression was relieved by H89. These data suggest that the loss in the function of inhibitory interneurons contributes to glutamate-associated central sensitization through the GABABR2/PKA/SynCAM1 pathway in the PAG of CM rats.


Assuntos
Moléculas de Adesão Celular/metabolismo , Sensibilização do Sistema Nervoso Central , Imunoglobulinas/metabolismo , Interneurônios/metabolismo , Transtornos de Enxaqueca/metabolismo , Receptores de GABA-B/metabolismo , Transdução de Sinais , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Ácido Glutâmico/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Masculino , Transtornos de Enxaqueca/fisiopatologia , Inibição Neural , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo
16.
Cell Rep ; 23(3): 909-917, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669294

RESUMO

The 2016-2017 epidemic of influenza A (H7N9) virus in China prompted concern that a genetic change may underlie increased virulence. Based on an evolutionary analysis of H7N9 viruses from all five outbreak waves, we find that additional subclades of the H7 and N9 genes have emerged. Our analysis indicates that H7N9 viruses inherited NP genes from co-circulating H7N9 instead of H9N2 viruses. Genotypic diversity among H7N9 viruses increased following wave I, peaked during wave III, and rapidly deceased thereafter with minimal diversity in wave V, suggesting that the viruses entered a relatively stable evolutionary stage. The ZJ11 genotype caused the majority of human infections in wave V. We suggest that the largest outbreak of wave V may be due to a constellation of genes rather than a single mutation. Therefore, continuous surveillance is necessary to minimize the threat of H7N9 viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/patologia , Substituição de Aminoácidos , Antígenos/genética , Antígenos/imunologia , Antígenos/metabolismo , China/epidemiologia , Surtos de Doenças , Evolução Molecular , Genótipo , Humanos , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Humana/epidemiologia , Influenza Humana/virologia , Proteínas do Nucleocapsídeo , Filogenia , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/classificação , RNA Polimerase Dependente de RNA/genética , Proteínas do Core Viral/classificação , Proteínas do Core Viral/genética , Proteínas Virais/classificação , Proteínas Virais/genética
17.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28956760

RESUMO

The novel low-pathogenic avian influenza A H7N9 viruses (LPAI H7N9 viruses) have been a threat to public health since their emergence in 2013 because of the high rates of mortality and morbidity that they cause. Recently, highly pathogenic variants of these avian influenza A H7N9 viruses (HPAI H7N9 viruses) have emerged and caused human infections and outbreaks among poultry in mainland China. However, it is still unclear how the HPAI H7N9 virus was generated and how it evolved and spread in China. Here, we show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region and spread southward to the Pearl River Delta region, possibly through live poultry trade. After introduction into the Pearl River Delta region, the origin LPAI H7N9 virus acquired four amino acid insertions in the hemagglutinin (HA) protein cleavage site and mutated into the HPAI H7N9 virus in late May 2016. Afterward, the HPAI H7N9 viruses further reassorted with LPAI H7N9 or H9N2 viruses locally and generated multiple different genotypes. As of 14 July 2017, the HPAI H7N9 viruses had spread from Guangdong Province to at least 12 other provinces. The rapid geographical expansion and genetic evolution of the HPAI H7N9 viruses pose a great challenge not only to public health but also to poultry production. Effective control measures, including enhanced surveillance, are therefore urgently needed.IMPORTANCE The LPAI H7N9 virus has caused five outbreak waves in humans and was recently reported to have mutated into highly pathogenic variants. It is unknown how the HPAI H7N9 virus originated, evolved, and disseminated in China. In this study, we comprehensively analyzed the sequences of HPAI H7N9 viruses from 28 human and 21 environmental samples covering eight provinces in China that were taken from November 2016 to June 2017. The results show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region. However, the insertion of four amino acids into the HA protein cleavage site of an LPAI H7N9 virus occurred in late May 2016 in the Pearl River Delta region. The mutated HPAI H7N9 virus further reassorted with LPAI H7N9 or H9N2 viruses that were cocirculating in poultry. Considering the rapid geographical expansion of the HPAI H7N9 viruses, effective control measures are urgently needed.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Aves Domésticas/virologia , Animais , Aves , China/epidemiologia , Surtos de Doenças , Evolução Molecular , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Influenza Humana/transmissão , Mutação , Filogenia , Vírus Reordenados
18.
Arch Virol ; 162(12): 3681-3690, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28840439

RESUMO

Live poultry markets (LPM) are one of the most important sources of human infection with avian influenza virus (AIV). During our routine surveillance of AIV, we identified an H9N6 virus (JX-H9N6) in a LPM in Nanchang city, Jiangxi Province, China. Using Bayesian coalescent analysis, it was predicted that JX-H9N6 had originated from a reassortment event between H9N2 and H6N6 AIVs in early 2014, instead of being derived from an H9N6 virus reported previously. Mutations in HA, PB1, PA, M, and NS protein, which could increase mammalian transmission and virulence, were also detected. Currently, both H9N2 and H6N6 AIVs are widely distributed in poultry and contribute to the generation of novel reassortant viruses causing human infection. Our findings highlight the importance of enhanced surveillance in birds for early prediction of human infections.


Assuntos
Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Aves Domésticas/virologia , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Animais , China , Evolução Molecular , Vírus da Influenza A/genética , Mutação , Vírus Reordenados/genética , Proteínas Virais/genética
19.
Virol J ; 14(1): 136, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738865

RESUMO

BACKGROUND: Recently, avian influenza virus has caused repeated worldwide outbreaks in humans. Live Poultry Markets (LPMs) play an important role in the circulation and reassortment of novel Avian Influenza Virus (AIVs). Aerosol transmission is one of the most important pathways for influenza virus to spread among poultry, from poultry to mammals, and among mammals. METHODS: In this study, air samples were collected from LPMs in Nanchang city between April 2014 and March 2015 to investigate possible aerosol transmission of AIVs. Air samples were detected for Flu A by Real-Time Reverse Transcription-Polymerase Chain Reaction (RRT-PCR). If samples were positive for Flu A, they were inoculated into 9- to 10-day-old specific-pathogen-free embryonated eggs. If the result was positive, the whole genome of the virus was sequenced by MiSeq. Phylogenetic trees of all 8 segments were constructed using MEGA 6.05 software. RESULTS: To investigate the possible aerosol transmission of AIVs, 807 air samples were collected from LPMs in Nanchang city between April 2014 and March 2015. Based on RRT-PCR results, 275 samples (34.1%) were Flu A positive, and one virus was successfully isolated with embryonated eggs. The virus shared high nucleotide homology with H9N2 AIVs from South China. CONCLUSIONS: Our study provides further evidence that the air in LPMs can be contaminated by influenza viruses and their nucleic acids, and this should be considered when choosing and evaluating disinfection strategies in LPMs, such as regular air disinfection. Aerosolized viruses such as the H9N2 virus detected in this study can increase the risk of human infection when people are exposed in LPMs.


Assuntos
Microbiologia do Ar , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Animais , Embrião de Galinha , China , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Cultura de Vírus , Sequenciamento Completo do Genoma
20.
Bing Du Xue Bao ; 29(5): 555-8, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24386846

RESUMO

Thogoto virus belongs to the family Orthomyxoviridae. It is a tick-borne arbovirus that can infect both human and animals. Thogoto virus's genetic constitution, replication and transcription, and the function of the translated proteins are similar to influenza virus. The studies on Thogoto virus are important for us to better understand the conservative sites of influenza virus. Moreover, the animal model of Thogo-to virus is expected to be an alternative model for highly pathogenic influenza viruses. In the past years, Thogoto virus attracted limited public attention and few studies were engaged in this area. The classification of Thogoto virus, the genetic constitution and evolution, and viral proteins were included in this review. The functions of M protein and ML protein were emphasized, which were translated from the sixth segment and played an important role in viral replication, the interaction between Thogoto virus and host were also highlighted.


Assuntos
Infecções por Orthomyxoviridae/virologia , Thogotovirus/fisiologia , Animais , Pesquisa Biomédica/tendências , Interações Hospedeiro-Patógeno , Humanos , Thogotovirus/classificação , Thogotovirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA